Math 4200
Wednesday September 9

1.5: From last weeks notes: Review of chain rule for curves and CR equations; precise
discussion of the differential map in our context, which is also used more generally for
differentiable transformations between Euclidean spaces and differentiable manifolds;
new in today's notes: proofs of the full CR theorem and inverse function theorem using
Math 3220 ideas.

Announcements:

Warmup exercise: Recall the CR equations for the partial derivatives of the real and
imaginary parts of a complex differentiable function f(z):
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Re-derive the CR equations using the chain rule for curves and the identity
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2) Theorem (Chain rule for curves) If f is differentiable at zy and y:/ S R—C isa
parametric curve Y(#) =x(¢) + i y(¢) such that y(#,) =z, and such that

Y (to) =x" (%) +iy'(f)exists, then
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proof We can use the affine approximation formula for f, at y(¢), and mimic the
proof of Theorem 1. ¥
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Domain-range-geometry tmptied by the chain rule for curves. Consider the curve y(¢)
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which has image in the domain of f, along with the curve f° y(z) which has image in

' 0 . .
the range of f. Let f (y( o) ) =re . Then the image curve tangent vector is

obtained by rotating the original curve tangent vector by r and scaling it by 0.
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Conformal transformations and differential map discussion:

(1) The precise definition of the fangent space at z, € C is the set of all tangent

vectors there, i.e. tangent vectors to curves passing through z,:
TZOC = {y' (%) ‘ Y is differentiable at 7, and (7 ) :ZO}

(i1) If f(z) is a function from C to C that arises from a real-differentiable function
F:A € R?—>R?, then the differential of f at z, is defined by

dr. (1'(10)) = (/27)" (10)-
df, :T, C—T, C.
fzo “0 /(%)
(ii1) By the chain rule for curves, if f(z) is complex differentiable at z,, then

dfzo(Y'(fO)) = ()" (o) =1 (20)¥' (%)

Geometrically, this means that for complex differentiable functions f, the differential

map is a linear transformation from 7 C to T’ P - )(D which is a rotation-dilation.
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(iv) A function f: C— C is called conformal at z, iff its differential transformation

preserves angles between tangent vectors. Since rotation-dilations have this property, a
function f* which is complex differentiable at z,, and for which /" (z,) # 0, is

conformal at z, . (It turns out that if f is conformal at z, and also preserves

orientations of pairs of tangent vectors, then f is complex differentiable at z.)



Illustration. Consider

f(z) :ZZ, zy=1+1,

f(z) =20 f'(zo)=2+zi=3i7£

Below, are parts of a rectangular coordinate grid in the domain, and the image of that
grid in the range space.

a) Why are the images of the real and imaginary grid lines also perpendicular?
b) Find the formula for the differential map
d :T C—-T C
o % /(%) Limish do ‘
and illustrate the rotation dilation. msh da'Scnssn—
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The next two theorems are applications of Math 3220 analysis and the correspondence
between f:4 = C—C, and F: 4 S R2—>R2: For each

there corresponds

Theorem (full CR Theorem) Let 4 = C open, f:4—C, z) € 4. Write

fE@)=f(x +iy)=u(x,y) + iv(x,y)
where

u(x, y) =Re(f(x+iy), v(x,y) =Im(f(x+iy)

Then if fis complex differentiable at z, =x, + iy, if and only if the following two

conditions hold:

(1) The Cauchy-Riemann equations hold at (x, yo) :
(%o %) =¥ (%0 o)
(%> Yo) = Vx(¥o0 Vo)

AND

(2) F(x,y)=(u(x,y), v(x,y)) is Real differentiable at (xO, yo) in the affine

approximation sense you discussed in Math 3220. In particular real differentiability is
implied by the condition that all of the partial derivatives u , Yy Ve Y, exist and are

continuous in a neigborhood of (xo, yo) :
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Theorem (Inverse function theorem) Let f be complex differentiable in a

neighborhood of z,, with f*(z;) # 0 and /" (z) continuous. Then there exist open sets

U, V with zy € U, f(zy) € V such that f: U—V is a bijection and /™' : V> U is

also analytic. Furthermore

Vze U.
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Loose end: (applies to the hw problem 1.5.16)

Theorem Let A be an open connected set in C, f: 4 — C analytic, with
f'(z)=0V z& A. Then f is constant.

proof: For open sets, connected and path-connected are equivalent. Any continuous
path connecting two points in 4 can be approximated with a continuously differentiable

( Cl) path connecting the same two points. Let Z, be any fixed pointin 4. Let z € 4

be any other point. Let y be a ' curve,
v:la, b]— 4
Y(a) =z,
V(b) =z

Then by the fundamental theorem of Calculus (applied to the real and imaginary parts of
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QED
(Or, you showed in Math 3220 that a continuously differentiable function of several
variables defined on an open connected set and with all partial derivatives equal to zero,
is constant. That theorem applies here, since the partials of Re( /), Im(f) are zero if

=0



